THE STEREOCHEMISTRY OF ORGANOMERCURY COMPOUNDS II. A REDETERMINATION OF THE STRUCTURE OF MERCURY(II) CYANIDE BY NEUTRON DIFFRACTION*

R. C. SECCOMBE AND C. H. L. KENNARD

Department of Chemistry, University of Queensland, Brisbane, Queensland 4067 (Australia) (Received April 21st, 1969)

SUMMARY

The crystal structure of mercury(II) cyanide, $Hg(CN)_2$, has been determined using three dimensional neutron diffraction data. The compound crystallizes out in a tetragonal unit cell, space group $I\overline{4}2d$; cell dimensions, a=9.643, c=8.88 Å. There are eight molecules per unit cell. Interatomic distances and angles are: Hg–C, 2.015(3); C–N, 1.137(3); non bonding Hg–N, 2.742(3) Å; C–Hg–C, 175.0(2)°; Hg–C–N, 177.0(3)°.

INTRODUCTION

The crystal structure determinations of di-*p*-tolylmercury¹, diphenylmercury², potassium iododicyanomercurate(II)³, and methylmercury(II) cyanide⁴ showed that the C-Hg-C skeletons were linear due to mercury atoms being at centres of symmetry. However in mercury(II) cyanide⁵, and bis(pentafluorophenyl)mercury⁶, where the mercury atoms do not lie at symmetry centres, the skeletons were non linear with C-Hg-C angles of 171(2)° and 176(1)° respectively. From chemical consideration this anomalous behaviour could not be explained. Because of the limited two dimensional data used in the neutron determination of mercury(II) cyanide⁵, (13 *hk*0, 22 0*kl* reflections, 5 positional and 3 thermal parameters), a redetermination using three dimensional neutron data was carried out to confirm whether the C-Hg-C skeleton was non linear.

CRYSTAL DATA

Mercury(II) cyanide, C_2HgN_2 , mol.wt.=252.5; tetragonal, (previous cell dimensions used)⁵ a=9.643, c=8.88 Å; Z=8, $d_c=4.06$; Space Group used, $I\bar{4}2d$ (D_{2d}^{12} , No. 122). Data were collected on a goniostat using the A.I.N.S.E. single crystal diffractometer installed at the 2TAN window of the Australian Atomic Energy Commission's reactor HIFAR at Lucas Heights, N.S.W. A total of 261 independent reflections were collected up to $2\theta=140^\circ$, using a $2\theta/\theta$ step scan technique. The spectrometer was monitor controlled, and the monochromatic beam intensity at the

^{*} For Part I see ref. 4.

ATOMIC	AND THERMAL	PARAMET	TERS OF MERCU	ry(II) cyani	DE ⁴					I			
Atom	x/a		y/b		z/c		B ₁₁	B22	B_{33}	B ₁₂	B13	B_{13}	B _{iso}
	This work	Ref. 5	This work	Rcf. 5	This work	Ref. 5							(c .131)
Hg	0.2117(1)	0.2125	0.25	0.25	0.125	0.125	2.95(9)	2.11(8)	2.83 (7)	0	0	0	2.8
c	0.2026(9)	0.197	0.0447(7)	0.047	0.1630(1)	0.159	4.1(1)	2.1(1)	3.0(1)	0.1(1)	0.3(1)	0.2(1)	3.3
z	0.2039(9)	0.212	-0.0726(7)	0.073	0.1805(8)	0.183	6.5(2)	2.2(1)	4.7(1)	0.3(1)	0.3(1)	0.5(1)	3.3
⁴ Estim	ated standard	deviation	are given in	parentheses	. The temperatu	re factor i	is defined b	y exp [-4,	$\sum_{i=1}^{3} \sum_{j=1}^{3} B_{ij} h$	(n, a, a)			

244

J. Organometal. Chem., 18 (1969) 243-247

TABLE 1

specimen was approximately $5 \times 10^{5} \text{ n} \cdot \text{cm}^{-2} \cdot \text{sec}^{-1}$ at a wavelength of 1.24(1) Å. Data was corrected for Lorentz factor and absorption but not for extinction. For the calculation of structure factors, the following scattering lengths were used⁷ $b_{\text{Hg}} = 1.27 \times 10^{-12}$ cm, $b_{\text{C}} = 0.661 \times 10^{-12}$ cm, $b_{\text{N}} = 0.94 \times 10^{-12}$ cm. Absorption corrections to the neutron intensities were made using an A.A.E.C. modified version of ORABS, and the structure was refined using an A.A.E.C. version of ORFLS (COXFLS, IBM360/50) and Dr. J. Blount's version of ORFLS (CDC 3600).

STRUCTURE DETERMINATION

Starting with the original parameters⁵, three cycles of full matrix least squares refinement with individual isotropic temperature factors reduced the conventional $R_1[=\Sigma||F_{obs}|-|F_{calc}||/\Sigma|F_{obs}|]$ to 0.086. After four cycles of anisotropic refinement R_1 reduced to 0.036 and a weir triad $R_2[=\Sigma w \cdot (|F_{obs}|-|F_{calc}|)^2/\Sigma w \cdot |F_{obs}|^2]$ to 0.033.

TABLE 2

INTERATOMIC	DISTANCES AND AN	GLES			
		Corrected for thermal motion	Ref. 5		
Hg-C	2.015(3)	2.019(3)	1.99(2)		
C-N	1.137(3)	1.160(3)	1.18(2)		
Hg–N ¹	2.742(3)		2.70		
C-Hg-C	175.0(2)		171(2)		
Hg–Č–N	177.0(3)		173(2)		

Fig. 1. Atomic arrangement in the unit cell of mercury(II) cyanide: projection on the (001) plane.

٠

246 TABLE 3

OBSERVED STRUCTURE AMPLITUDES AND CALCULATED STRUCTURE FACTORS (SCALE: 100 × ABSOLUTE)

н	к	L	FO	FC	н	ĸ	۰L	FO	FC	н	к	L	FO	FC	
2	0	0	1050	1042	5	4	3	504	498	7	3	6	206	218	
4	Q	Ū	1136	1133	7	4	3	493	488	9	3	6	263	281	
6	۵	5	903	895	9	4	3	494	481	6	4	6.~	202	204	
8	0	Ű.	796	792	6	5	3	656	651	8	4	6	349	361	
10	4	0	134	139	10	25	3	407	409	10	5	Å	322	305	
5	i	ŭ	260	243	7	6	3	353	324	ž	ร์	6	215	201	
2	2	ū	572	537	9	6	3	523	509	9	5	6	240	255	
4	2	n	446	425	11	6	3	148`	. 143	8	6	6	285	290	
40	~	10	987	975	10	7	3	238	257	10	6	,	167	163	
15	3	ň	172	147	10	Ĝ	3	260	304			2	519	513	
9	3	ā	690	693	Ū.	ō	4	1531	1612	3	ñ	7	248	239	
4	- 4	0	537	526	5	Û	4	806	816	7	D	7	366	343	
6	4	ů,	436	417		a	4	782	777	9	Q	2	138	148	
	2	0	183	1/7	7	- D - 4	-	465	426	2	1	~	587	573	
11		n	248	240	Š	-	-	707	700		-	ź	143	127	
19	6	ŭ	237	247	ģ	i	4	648	628	8	1	7	520	488	
9	7	a	217	212	11	1	4	308	320	10	ī	7	147	138	
1	ğ	1	197	125	13	1	4	238	244	5	2	2	337	359	
5	u 0	4	120/	120/	É.	5	2	556	551		2	4	529	510	
é	ŏ	î	531	547	6	ž	4	503	481	4	- 5	7	192	186	
Ż	1	ī	421	396	8	2	4	290	296	10	ž	Ż	139	149	
4	1	1	387	366	10	2	4	200	314	5	- 4	7	410	412	
. 6	1	1	452	432	5	3		271	264		4	<u> </u>	342	318	
10	1	1	300	3/9	ģ	3	- 2	432	422	11	- 2	4	144	176	
5	2	1	231	224	- 11	3	4	216	240	8	5	7	378	367	
7	5	1	208	212	13	3	4	151	164	10	5	7	144	135	
9	2	1	500	512	4	4	4	502	512	7	6	7	256	263	
2	3 7	1	778	089 773	Ä	- 2	- 2	285	291	9	67	7	193	267	
ă	3	1	319	324	10	4	4	265	264	10	ź	7	126	140	
10	3	ī	421	422	7	5	4	496	487	- 9	. 8	7	147	210	
5	4	1	558	553	9	5	4	350	372	0	٥	5	<u>1</u> 57	162	
7	4	1	280	296	11	5	4	240	259	2	0	8	458	476	
Å	6	1	8//	758	8	6		188	188	4	0	8	303	309	
8	ś	1	320	339	10	6	4	240	251	3	1	6	359	336	
10	5	1	430	460	9	7	4	242	265	5	1	٢	369	364	
7	6	1	502	509	10	ð	- 4	153	174	7	1	8	339	327	
10	8	1	578	575	3	ŭ	ś	672	655	ź	Ś	5	145	164	
2	ō	2	1387	1411	5	ō	5	632	614	8	2	ă	255	253	
10	Ō	2	962	953	7	0	5	142	183	5	3	ő	189	180	
12	0	2	459	459	2	0	5	567	556	7	3	5	252	252	
3	1	5	812 083	976	4	1	5	492	479	4	1	6	323	346	
5	î	è	712	696	6	i	ś	519	514	7	5	8	145	153	
7	1	2	383	384	.8	1	5	315	330	ò	5	õ	166	174	
2	1	2	590	593	10	1	5	538	522	6	6	8	263	285	
2	5	2	574	554	35	5	5	407	427 504	1	U A	ž	2/1	234	
8	ž	ž	233	241	ź	2	5	183	168	Å	1		411	383	
10	2	2	458	464	9	2	5	520	505	ă	i	ç	164	179	
12	2	2	219	223	4	3	5	427	435	10	1	9	137	135	
5	3	ź	410	402	10	3	5	311 288	296	3	2	2	424	414	
6	4	z	302	282	-5	- 4	5	557	564	ó	2	ģ	149	218	
8	4	2	264	265	7	4	5	177	173	4	3	9	200	177	
10	- 2	2	244	263	44	1	5	390	384	6	3	9	232	233	
- 3	5	2	395	373	-6	5	5	429	433	5	4		240	227	
7	5	2	198	197	8	5	5	273	295	7	4	ý.	301	291	
9	5	2	249	243	10	5	5	505	210	6	5	9	162	167	
.8	6	2	353	339	7	6	5	248	271	8	5	9	280	294	
10	7	2	357	205	9	5	5	145	174		0		154	107	
9	ġ	2	444	457	10	7	š	277	272	4	ŏ	10	220	169	
1	0	3	1104	1129	9	8	5	265	278	8	Ō	10	281	265	
3	0	3	465	456	Ş	0		270	275	1	1	10	486	455	
7	ň	3	1133	1128	4	u n	0 4	20J 44R	457	3 8	1	10	310	244	
11	ā	3	148	143	10	ő	6	305	282	7	4	10	233	239	
2	1	3	734	740	12	0	6	152	197	Á.	ź	10	176	169	
4	1	3	378	373	1	1	6	975	983	3	3	10	277	273	
8	1	3	621	645	3 5	1	Ó Á	741	262 750	5	3	10	159	173	
10	ĩ	3	201	203	ź	i	ě	451	441	6	4	10	179	220	
3	2	3	496	486	4	2	6	130	134	4	1	11	273	259	
5	2	3	336	328	6	2	6	142	159	5	ŝ	11	269	293	
11	2	3	181	470	0	4	2	3+2	310	<u>,</u>	3	11	211	183	
4	3	3	305	302	12	5	6	182	211	-	•	12	200	₽ י/£	
10	3	3	380	387	ิ์รั	3	6	490	480						
12	3	3	171	195	5	3	6	548	545						

THE STRUCTURE OF MERCURY (II) CYANIDE

Final fractional and thermal parameters are compared with the original results⁵ in Table 1. Table 2 lists interatomic distances and angles, while in Table 3 the observed and calculated structure factors are tabulated. The weighting scheme was based on the standard deviation of the integrated intensity.

DISCUSSION

This work showed that both the C-Hg-C and N-C-Hg angles are close to 180° and not as distorted as previously reported⁵. It is a moot point whether these links are not linear.

Mercury(II) cyanide exists in the solid state as discrete monomeric molecules arranged in a zig-zag pattern as shown in Fig. 1. Each mercury atom is surrounded by two bonding cyanide groups, (linked through the carbon), and two sets of two equidistant nitrogen atoms from neighbouring molecules. The shortest non-bonded distance of 2.74 Å is significantly less than the Van der Waals contact distance (3.1 Å)but greater than the covalent length (2.1-2.2 Å). Inspection of the figure shows the presence of a capillary of approximate diameter 3 Å running parallel to the c axis.

ACKNOWLEDGEMENTS

We wish to express our sincere thanks to the Australian Institute of Nuclear Science and Engineering (A.I.N.S.E.) for a grant, and for providing neutron diffraction facilities, and to the members of the A.I.N.S.E. Neutron Diffraction Group for their assistance. One of us (R.C.S.) is a recipient of a Commonwealth Postgraduate Scholarship.

REFERENCES

- 1 N. R. KUNCHUR AND M. MATHEW, Proc. Chem. Soc., (1964) 414.
- 2 B. ZIOLKOWSKA, Rocz. Chem., 36 (1962) 1341; B. ZIOLKOWSKA, R. M. MYASNIKOVA AND A. I. KITAI-GORODSKII, J. Struct. Chem. (Engl. Trans.), 5 (1964) 678.
- 3 F. H. KRUSE, Acta Crystallogr., 16 (1963) 105.
- 4 J. C. MILLS, H. S. PRESTON AND C. H. L. KENNARD, J. Organometal. Chem., 14 (1968) 33.
- 5 J. HVOSLEF, Acta Chem. Scand., 12 (1958) 1568.
- 6 N. R. KUNCHUR AND M. MATHEW, Chem. Commun., (1966) 71.
- 7 M. ELCOMBE, private communication from G. Bacon.

J. Organometal. Chem., 18 (1969) 243-247